A Practical Approach to Coronal Magnetic Field Extrapolation Based on the Principle of Minimum Dissipation Rate
نویسنده
چکیده
We present a newly developed approach to solar coronal magnetic field extrapolation from vector magnetograms, based on the Principle of Minimum Dissipation Rate (MDR). The MDR system was derived from a variational problem that is more suitable for an open and externally driven system, like the solar corona. The resulting magnetic field equation is more general than force-free. Its solution can be expressed as the superposition of two linear (constant-α) forcefree fields (LFFFs) with distinct α parameters, and one potential field. Thus the original extrapolation problem is decomposed into three LFFF extrapolations, utilizing boundary data. The full MDR-based approach requires two layers of vector magnetograph measurements on solar surface, while a slightly modified practical approach only requires one. We test both approaches against 3D MHD simulation data in a finite volume. Both yield quantitatively good results. The errors in the magnetic energy estimate are within a few percents. In particular, the main features of relatively strong perpendicular current density structures, representative of the non-force freeness of the solution, are well recovered. Subject headings: MHD — methods: data analysis — Sun: corona — Sun: magnetic fields
منابع مشابه
Magnetohydrodynamics Fluid Flow and Heat Transfer over a Permeable Shrinking Sheet with Joule dissipation: Analytical Approach
A laminar, two dimensional, steady boundary layer Newtonian conducting fluid flow passes over a permeable shrinking sheet in the presence of a uniform magnetic field is investigated. The governing equations have converted to ordinary nonlinear differential equations (ODE) by using appropriate similarity transformations. The main idea is to transform ODE with infinite boundary condition into oth...
متن کاملInduced tissue cell death by magnetic nanoparticle hyperthermia for cancer treatment: an in silico study
In this paper, we simulate magnetic hyperthermia process on a mathematical phantom model representing cancer tumor and its surrounding healthy tissues. The temperature distribution throughout the phantom model is obtained by solving the bio-heat equations and the consequent cell death amount is calculated using correlations between the tissue local temperature and the cell death rate. To have a...
متن کاملGeneration of Alfvén Waves by Small-Scale Magnetic Reconnection in Solar Spicules
Alfvén waves dissipation is an extensively studied mechanism for the coronal heating problem. These waves can be generated by magnetic reconnection and propagated along the reconnected field lines. Here, we study the generation of Alfvén waves at the presence of both steady flow and sheared magnetic field in the longitudinally density stratified of solar spicules. The initial flow is assumed to...
متن کاملAnalytical investigation of the practical range and deflection of megavoltage electron beam in the water phantom with the presence of magnetic field
Introduction: Integrated radiation therapy - MRI systems are capable of delivering high doses to the target tissues near sensitive organs and achieve better therapeutic results; however, the Applied magnetic fields for imaging, can influence the charged path, change the penetration depth and deflect the particles, laterally, leading to dose distribution variations. Therefore, i...
متن کاملMeasurement of the Earth’s Magnetic Field Vector based on zero field finding algorithm using optically pumped magnetometers
Atomic magnetometers have found widespread applications in precise measurement of the Earth’s magnetic field due to their high sensitivity. In these measurements, various methods have been utilized to compensate the Earth’s magnetic field in an unshielded environment. In this paper, we have proposed a method based on finding the minimum resonance frequency (corresponding to minimum magnetic fie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008